arXiv:2506.17801 [math.AP]AbstractReferencesReviewsResources
Low regularity well-posedness of nonlocal dispersive perturbations of Burgers' equation
Luc Molinet, Didier Pilod, Stéphane Vento
Published 2025-06-21Version 1
We consider the Cauchy problem associated to a class of dispersive perturbations of Burgers' equations, which contains the low dispersion Benjamin-Ono equation, (also known as low dispersion fractional KdV equation), $$ \partial_tu-D_x^{\alpha}\partial_xu=\partial_x(u^2) \, ,$$ and prove that it is locally well-posed in $H^s(\mathbb K)$, $\mathbb K=\mathbb R$ or $\mathbb T$, for $s>s_{\alpha}$, where \begin{equation*} s_\alpha=\begin{cases} 1-\frac{3\alpha}4 & \text{for} \quad \frac23 \le \alpha \le 1; \frac 32(1-\alpha) & \text{for} \quad \frac13 \le \alpha \le \frac23; \frac 32-\frac{\alpha}{1-\alpha} & \text{for} \quad 0 < \alpha \le \frac13 . \end{cases} \end{equation*} The uniqueness is unconditional in $H^s(\mathbb K)$ for $s>\max\{\frac12,s_{\alpha}\}$. Moreover, we obtain \emph{a priori} estimates for the solutions at the lower regularity threshold $s>\widetilde{s}_\alpha$ where \begin{equation*} \widetilde{s}_\alpha=\begin{cases} \frac 12-\frac \alpha 4 & \text{for} \quad \frac23 \le \alpha \le 1; 1-\alpha & \text{for} \quad \frac12 \le \alpha \le \frac23; \frac 32-\frac{\alpha}{1-\alpha} & \text{for} \quad 0 < \alpha \le \frac12 . \end{cases} \end{equation*} As a consequence of these results and of the Hamiltonian structure of the equation, we deduce global well-posedness in $H^s(\mathbb K)$ for $s>s_{\alpha}$ when $\alpha>\frac23$, and in the energy space $H^{\frac{\alpha}2}(\mathbb K)$ when $\alpha>\frac45$.