{ "id": "2506.17801", "version": "v1", "published": "2025-06-21T19:59:57.000Z", "updated": "2025-06-21T19:59:57.000Z", "title": "Low regularity well-posedness of nonlocal dispersive perturbations of Burgers' equation", "authors": [ "Luc Molinet", "Didier Pilod", "Stéphane Vento" ], "comment": "48 pages", "categories": [ "math.AP" ], "abstract": "We consider the Cauchy problem associated to a class of dispersive perturbations of Burgers' equations, which contains the low dispersion Benjamin-Ono equation, (also known as low dispersion fractional KdV equation), $$ \\partial_tu-D_x^{\\alpha}\\partial_xu=\\partial_x(u^2) \\, ,$$ and prove that it is locally well-posed in $H^s(\\mathbb K)$, $\\mathbb K=\\mathbb R$ or $\\mathbb T$, for $s>s_{\\alpha}$, where \\begin{equation*} s_\\alpha=\\begin{cases} 1-\\frac{3\\alpha}4 & \\text{for} \\quad \\frac23 \\le \\alpha \\le 1; \\frac 32(1-\\alpha) & \\text{for} \\quad \\frac13 \\le \\alpha \\le \\frac23; \\frac 32-\\frac{\\alpha}{1-\\alpha} & \\text{for} \\quad 0 < \\alpha \\le \\frac13 . \\end{cases} \\end{equation*} The uniqueness is unconditional in $H^s(\\mathbb K)$ for $s>\\max\\{\\frac12,s_{\\alpha}\\}$. Moreover, we obtain \\emph{a priori} estimates for the solutions at the lower regularity threshold $s>\\widetilde{s}_\\alpha$ where \\begin{equation*} \\widetilde{s}_\\alpha=\\begin{cases} \\frac 12-\\frac \\alpha 4 & \\text{for} \\quad \\frac23 \\le \\alpha \\le 1; 1-\\alpha & \\text{for} \\quad \\frac12 \\le \\alpha \\le \\frac23; \\frac 32-\\frac{\\alpha}{1-\\alpha} & \\text{for} \\quad 0 < \\alpha \\le \\frac12 . \\end{cases} \\end{equation*} As a consequence of these results and of the Hamiltonian structure of the equation, we deduce global well-posedness in $H^s(\\mathbb K)$ for $s>s_{\\alpha}$ when $\\alpha>\\frac23$, and in the energy space $H^{\\frac{\\alpha}2}(\\mathbb K)$ when $\\alpha>\\frac45$.", "revisions": [ { "version": "v1", "updated": "2025-06-21T19:59:57.000Z" } ], "analyses": { "subjects": [ "35A01", "35A02", "35B45", "35E15", "35Q53" ], "keywords": [ "low regularity well-posedness", "nonlocal dispersive perturbations", "low dispersion fractional kdv equation", "low dispersion benjamin-ono equation" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable" } } }