arXiv:2505.06188 [math.GT]AbstractReferencesReviewsResources
KBSM of lens spaces $L(p,2)$ and $L(4k,2k+1)$
Mieczyslaw K. Dabkowski, Cheyu Wu
Published 2025-05-09Version 1
J. Hoste and J. H. Przytycki computed the Kauffman bracket skein module (KBSM) of lens spaces in their papers published in 1993 and 1995. Using a basis for the KBSM of a fibered torus, we construct new bases for the KBSMs of two families of lens spaces: $L(p,2)$ and $L(4k,2k+1)$ with $k\neq 0$. For KBSM of $L(0,1) = {\bf S}^{2}\times S^{1}$, we find a new generating set that yields its decomposition into a direct sum of cyclic modules.
Comments: 30 pages, 20 figures
Categories: math.GT
Related articles: Most relevant | Search more
arXiv:2502.00912 [math.GT] (Published 2025-02-02)
Basis for KBSM of fibered torus with multiplicity two exceptional fiber
arXiv:2204.00410 [math.GT] (Published 2022-04-01)
The Kauffman bracket skein module of the lens spaces via unoriented braids
arXiv:2405.04337 [math.GT] (Published 2024-05-07)
On the Kauffman bracket skein module of $(S^1 \times S^2) \ \# \ (S^1 \times S^2)$