arXiv Analytics

Sign in

arXiv:2405.04337 [math.GT]AbstractReferencesReviewsResources

On the Kauffman bracket skein module of $(S^1 \times S^2) \ \# \ (S^1 \times S^2)$

Rhea Palak Bakshi, Seongjeong Kim, Xiao Wang

Published 2024-05-07Version 1

Determining the structure of the Kauffman bracket skein module of all $3$-manifolds over the ring of Laurent polynomials $\mathbb Z[A^{\pm 1}]$ is a big open problem in skein theory. Very little is known about the skein module of non-prime manifolds over this ring. In this paper, we compute the Kauffman bracket skein module of the $3$-manifold $(S^1 \times S^2) \ \# \ (S^1 \times S^2)$ over the ring $\mathbb Z[A^{\pm 1}]$. We do this by analysing the submodule of handle sliding relations, for which we provide a suitable basis. Along the way we also compute the Kauffman bracket skein module of $(S^1 \times S^2) \ \# \ (S^1 \times D^2)$. Furthermore, we show that the skein module of $(S^1 \times S^2) \ \# \ (S^1 \times S^2)$ does not split into the sum of free and $(A^k-A^{-k})$-torsion modules, for each $k\geq 1$.

Related articles: Most relevant | Search more
arXiv:2005.07750 [math.GT] (Published 2020-05-15)
Kauffman Bracket Skein Module of the Connected Sum of Handlebodies: A Counterexample
arXiv:2106.04965 [math.GT] (Published 2021-06-09)
The Kauffman bracket skein module of the complement of $(2, 2p+1)$-torus knots via braids
arXiv:2406.17454 [math.GT] (Published 2024-06-25)
On torsion in the Kauffman bracket skein module of $3$-manifolds