{ "id": "2405.04337", "version": "v1", "published": "2024-05-07T14:11:13.000Z", "updated": "2024-05-07T14:11:13.000Z", "title": "On the Kauffman bracket skein module of $(S^1 \\times S^2) \\ \\# \\ (S^1 \\times S^2)$", "authors": [ "Rhea Palak Bakshi", "Seongjeong Kim", "Xiao Wang" ], "comment": "30 pages, 20 figures", "categories": [ "math.GT", "math.QA" ], "abstract": "Determining the structure of the Kauffman bracket skein module of all $3$-manifolds over the ring of Laurent polynomials $\\mathbb Z[A^{\\pm 1}]$ is a big open problem in skein theory. Very little is known about the skein module of non-prime manifolds over this ring. In this paper, we compute the Kauffman bracket skein module of the $3$-manifold $(S^1 \\times S^2) \\ \\# \\ (S^1 \\times S^2)$ over the ring $\\mathbb Z[A^{\\pm 1}]$. We do this by analysing the submodule of handle sliding relations, for which we provide a suitable basis. Along the way we also compute the Kauffman bracket skein module of $(S^1 \\times S^2) \\ \\# \\ (S^1 \\times D^2)$. Furthermore, we show that the skein module of $(S^1 \\times S^2) \\ \\# \\ (S^1 \\times S^2)$ does not split into the sum of free and $(A^k-A^{-k})$-torsion modules, for each $k\\geq 1$.", "revisions": [ { "version": "v1", "updated": "2024-05-07T14:11:13.000Z" } ], "analyses": { "subjects": [ "57K31", "57K10" ], "keywords": [ "kauffman bracket skein module", "big open problem", "non-prime manifolds", "laurent polynomials", "skein theory" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }