arXiv:2505.02528 [math.CO]AbstractReferencesReviewsResources
Magic squares on Abelian groups
Sylwia Cichacz, Dalibor Froncek
Published 2025-05-05Version 1
Let $(\Gamma,+)$ be an Abelian group of order $n^2$ and MS$_{\Gamma}(n)$ be an $n\times n$ array whose entries are all elements of $\Gamma$. Then MS$_{\Gamma}(n)$ is a $\Gamma$-magic square if all row, column, main and backward main diagonal sums are equal to the same element $\mu\in\Gamma$. We prove that for every Abelian group $\Gamma$ of order $n^2$, $n>2$, there exists a magic square MS$_{\Gamma}(n)$ where the square entries are elements of $\Gamma$.
Related articles: Most relevant | Search more
arXiv:2209.10246 [math.CO] (Published 2022-09-21)
Magic partially filled arrays on abelian groups
arXiv:1805.02090 [math.CO] (Published 2018-05-05)
Separability of Schur rings over an abelian group of order 4p
Triangulations of the sphere, bitrades and abelian groups