{ "id": "2505.02528", "version": "v1", "published": "2025-05-05T10:09:31.000Z", "updated": "2025-05-05T10:09:31.000Z", "title": "Magic squares on Abelian groups", "authors": [ "Sylwia Cichacz", "Dalibor Froncek" ], "categories": [ "math.CO" ], "abstract": "Let $(\\Gamma,+)$ be an Abelian group of order $n^2$ and MS$_{\\Gamma}(n)$ be an $n\\times n$ array whose entries are all elements of $\\Gamma$. Then MS$_{\\Gamma}(n)$ is a $\\Gamma$-magic square if all row, column, main and backward main diagonal sums are equal to the same element $\\mu\\in\\Gamma$. We prove that for every Abelian group $\\Gamma$ of order $n^2$, $n>2$, there exists a magic square MS$_{\\Gamma}(n)$ where the square entries are elements of $\\Gamma$.", "revisions": [ { "version": "v1", "updated": "2025-05-05T10:09:31.000Z" } ], "analyses": { "subjects": [ "05B15" ], "keywords": [ "abelian group", "magic square ms", "backward main diagonal sums", "square entries" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }