arXiv Analytics

Sign in

arXiv:2505.02202 [math.NT]AbstractReferencesReviewsResources

Multiple polylogarithms and the Steinberg module

Steven Charlton, Danylo Radchenko, Daniil Rudenko

Published 2025-05-04Version 1

We establish a connection between multiple polylogarithms on a torus and the Steinberg module of $\mathbb{Q}$, and show that multiple polylogarithms of depth $d$ and weight $n$ can be expressed via a single function $\mathrm{Li}_{n-d+1,1,\dots,1}(x_1,x_2,\dots,x_d)$. Using this connection, we give a simple proof of the Bykovski\u{\i} theorem, explain the duality between multiple polylogarithms and iterated integrals, and provide a polylogarithmic interpretation of the conjectures of Rognes and Church-Farb-Putman.

Related articles: Most relevant | Search more
arXiv:1609.05557 [math.NT] (Published 2016-09-18)
Multiple polylogarithms in weight 4
arXiv:2012.09840 [math.NT] (Published 2020-12-17)
Functional equations of polygonal type for multiple polylogarithms in weights 5, 6 and 7
arXiv:2411.15071 [math.NT] (Published 2024-11-22)
The Hopf algebra of multiple polylogarithms