{ "id": "2505.02202", "version": "v1", "published": "2025-05-04T17:49:08.000Z", "updated": "2025-05-04T17:49:08.000Z", "title": "Multiple polylogarithms and the Steinberg module", "authors": [ "Steven Charlton", "Danylo Radchenko", "Daniil Rudenko" ], "comment": "59 pages", "categories": [ "math.NT", "math.AG", "math.AT", "math.KT" ], "abstract": "We establish a connection between multiple polylogarithms on a torus and the Steinberg module of $\\mathbb{Q}$, and show that multiple polylogarithms of depth $d$ and weight $n$ can be expressed via a single function $\\mathrm{Li}_{n-d+1,1,\\dots,1}(x_1,x_2,\\dots,x_d)$. Using this connection, we give a simple proof of the Bykovski\\u{\\i} theorem, explain the duality between multiple polylogarithms and iterated integrals, and provide a polylogarithmic interpretation of the conjectures of Rognes and Church-Farb-Putman.", "revisions": [ { "version": "v1", "updated": "2025-05-04T17:49:08.000Z" } ], "analyses": { "subjects": [ "11G55", "19D45" ], "keywords": [ "multiple polylogarithms", "steinberg module", "connection", "single function", "simple proof" ], "note": { "typesetting": "TeX", "pages": 59, "language": "en", "license": "arXiv", "status": "editable" } } }