arXiv:2502.08627 [math.AP]AbstractReferencesReviewsResources
Calderón-Zygmund estimates for higher order elliptic equations in Orlicz-Sobolev spaces
Julián Fernández Bonder, Pablo Ochoa, Analía Silva
Published 2025-02-12Version 1
In this paper we obtain Calder\'on-Zygmund estimates for the laplacian of the following fourth order quasilinear elliptic problem $$ \Delta(g(\Delta u)\Delta u) = \Delta(g(\Delta f)\Delta f). $$ where the primitive of $g(t)t$, $G(t)$, is an $N-$function. We prove that if $G(f)\in L^q$, then $G(\Delta u)\in L^q$ for $q\ge 1$.
Comments: 20 pages, submitted
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:2308.05643 [math.AP] (Published 2023-08-10)
On solvability in the small of higher order elliptic equations in Orlicz-Sobolev spaces
arXiv:2411.01276 [math.AP] (Published 2024-11-02)
Nonlinear eigenvalue problems for a biharmonic operator in Orlicz-Sobolev spaces
arXiv:1809.05591 [math.AP] (Published 2018-09-14)
On a nonlinear eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces