{ "id": "2502.08627", "version": "v1", "published": "2025-02-12T18:29:04.000Z", "updated": "2025-02-12T18:29:04.000Z", "title": "Calderón-Zygmund estimates for higher order elliptic equations in Orlicz-Sobolev spaces", "authors": [ "Julián Fernández Bonder", "Pablo Ochoa", "Analía Silva" ], "comment": "20 pages, submitted", "categories": [ "math.AP" ], "abstract": "In this paper we obtain Calder\\'on-Zygmund estimates for the laplacian of the following fourth order quasilinear elliptic problem $$ \\Delta(g(\\Delta u)\\Delta u) = \\Delta(g(\\Delta f)\\Delta f). $$ where the primitive of $g(t)t$, $G(t)$, is an $N-$function. We prove that if $G(f)\\in L^q$, then $G(\\Delta u)\\in L^q$ for $q\\ge 1$.", "revisions": [ { "version": "v1", "updated": "2025-02-12T18:29:04.000Z" } ], "analyses": { "subjects": [ "46E30", "35P30", "35D30" ], "keywords": [ "higher order elliptic equations", "calderón-zygmund estimates", "orlicz-sobolev spaces", "fourth order quasilinear elliptic problem" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }