arXiv Analytics

Sign in

arXiv:2502.02262 [math.CO]AbstractReferencesReviewsResources

The major index (maj) and its Schützenberger dual

Oleg Ogievetsky, Senya Shlosman

Published 2025-02-04, updated 2025-06-24Version 2

We construct the independent particle representation for the Semistandard Young Tableaux (SsYT) of skew shape $\lambda/\mu.$ The partition function of this particle system gives the generating function of the SsYT of skew shape $\lambda/\mu.$ Thus we obtain a bijective proof of the Stanley formula for the SsYT generating function. To do this we define for every SsYT $T$ its plinth, $\mathsf{p}\left( T\right) ,$ which is a SsYT of the same shape $\lambda/\mu.$ The set of plinths is finite. Our bijection associates to every SsYT $T$ a pair $\left( \mathsf{p}\left( T\right) ,Y\left( T-\mathsf{p}\left( T\right) \right) \right) ,$ where $Y\left( T-\mathsf{p}\left( T\right) \right) $ is the reading Young diagram of the SsYT $\left( T-\mathsf{p}\left( T\right) \right) $. \newline In particular, every Standard Young Tableau (SYT) $P$ has its plinth, $\mathsf{p}\left( P\right) $. The two statistics of SYT-s -- the volume $\left\vert \mathsf{p}\left( P\right) \right\vert $ and $\mathsf{maj}\left( P\right) $ -- are related via the Sch\"{u}tzenberger involution $Sch:$% \[ \left\vert \mathsf{p}\left( P\right) \right\vert =\mathsf{maj}\left( Sch\left( P\right) \right) . \]

Related articles: Most relevant | Search more
arXiv:math/0403262 [math.CO] (Published 2004-03-16, updated 2004-03-24)
The Number of Convex Polyominoes and the Generating Function of Jacobi Polynomials
arXiv:math/0404467 [math.CO] (Published 2004-04-26)
Generating Functions of Random Walks on Graphs
arXiv:math/0403546 [math.CO] (Published 2004-03-31)
Neighborhood complexes and generating functions for affine semigroups