{ "id": "2502.02262", "version": "v2", "published": "2025-02-04T12:20:03.000Z", "updated": "2025-06-24T17:08:32.000Z", "title": "The major index (maj) and its Schützenberger dual", "authors": [ "Oleg Ogievetsky", "Senya Shlosman" ], "comment": "20 pages", "categories": [ "math.CO" ], "abstract": "We construct the independent particle representation for the Semistandard Young Tableaux (SsYT) of skew shape $\\lambda/\\mu.$ The partition function of this particle system gives the generating function of the SsYT of skew shape $\\lambda/\\mu.$ Thus we obtain a bijective proof of the Stanley formula for the SsYT generating function. To do this we define for every SsYT $T$ its plinth, $\\mathsf{p}\\left( T\\right) ,$ which is a SsYT of the same shape $\\lambda/\\mu.$ The set of plinths is finite. Our bijection associates to every SsYT $T$ a pair $\\left( \\mathsf{p}\\left( T\\right) ,Y\\left( T-\\mathsf{p}\\left( T\\right) \\right) \\right) ,$ where $Y\\left( T-\\mathsf{p}\\left( T\\right) \\right) $ is the reading Young diagram of the SsYT $\\left( T-\\mathsf{p}\\left( T\\right) \\right) $. \\newline In particular, every Standard Young Tableau (SYT) $P$ has its plinth, $\\mathsf{p}\\left( P\\right) $. The two statistics of SYT-s -- the volume $\\left\\vert \\mathsf{p}\\left( P\\right) \\right\\vert $ and $\\mathsf{maj}\\left( P\\right) $ -- are related via the Sch\\\"{u}tzenberger involution $Sch:$% \\[ \\left\\vert \\mathsf{p}\\left( P\\right) \\right\\vert =\\mathsf{maj}\\left( Sch\\left( P\\right) \\right) . \\]", "revisions": [ { "version": "v2", "updated": "2025-06-24T17:08:32.000Z" } ], "analyses": { "subjects": [ "05A19", "05A15" ], "keywords": [ "schützenberger dual", "major index", "skew shape", "generating function", "independent particle representation" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }