arXiv:2502.00624 [math.CA]AbstractReferencesReviewsResources
Expressing the difference of two Hurwitz zeta functions by a linear combination of the Gauss hypergeometric functions
Published 2025-02-02Version 1
In the paper, the author expresses the difference $2^m\bigl[\zeta\bigl(-m,\frac{1+x}{2}\bigr)-\zeta\bigl(-m,\frac{2+x}{2}\bigr)\bigr]$ in terms of a linear combination of the function $\Gamma(m+1){\,}_2F_1(-m,-x;1;2)$ for $m\in\mathbb{N}_0$ and $x\in(-1,\infty)$ in the form of matrix equations, where $\Gamma(z)$, $\zeta(z,\alpha)$, and ${}_2F_1(a,b;c;z)$ stand for the classical Euler gamma function, the Hurwitz zeta function, and the Gauss hypergeometric function, respectively. This problem originates from the Landau level quantization in solid state materials.
Comments: 12 pages
Categories: math.CA
Related articles: Most relevant | Search more
arXiv:1603.00722 [math.CA] (Published 2016-03-02)
Integrals of products of Hurwitz zeta functions
arXiv:1809.08794 [math.CA] (Published 2018-09-24)
Asymptotics of a Gauss hypergeometric function with large parameters, IV: A uniform expansion
arXiv:2007.09661 [math.CA] (Published 2020-07-19)
On a new result for the hypergeometric function