arXiv Analytics

Sign in

arXiv:2502.00624 [math.CA]AbstractReferencesReviewsResources

Expressing the difference of two Hurwitz zeta functions by a linear combination of the Gauss hypergeometric functions

Feng Qi

Published 2025-02-02Version 1

In the paper, the author expresses the difference $2^m\bigl[\zeta\bigl(-m,\frac{1+x}{2}\bigr)-\zeta\bigl(-m,\frac{2+x}{2}\bigr)\bigr]$ in terms of a linear combination of the function $\Gamma(m+1){\,}_2F_1(-m,-x;1;2)$ for $m\in\mathbb{N}_0$ and $x\in(-1,\infty)$ in the form of matrix equations, where $\Gamma(z)$, $\zeta(z,\alpha)$, and ${}_2F_1(a,b;c;z)$ stand for the classical Euler gamma function, the Hurwitz zeta function, and the Gauss hypergeometric function, respectively. This problem originates from the Landau level quantization in solid state materials.

Related articles: Most relevant | Search more
arXiv:1603.00722 [math.CA] (Published 2016-03-02)
Integrals of products of Hurwitz zeta functions
arXiv:1809.08794 [math.CA] (Published 2018-09-24)
Asymptotics of a Gauss hypergeometric function with large parameters, IV: A uniform expansion
arXiv:2007.09661 [math.CA] (Published 2020-07-19)
On a new result for the hypergeometric function