{ "id": "2502.00624", "version": "v1", "published": "2025-02-02T01:45:32.000Z", "updated": "2025-02-02T01:45:32.000Z", "title": "Expressing the difference of two Hurwitz zeta functions by a linear combination of the Gauss hypergeometric functions", "authors": [ "Feng Qi" ], "comment": "12 pages", "categories": [ "math.CA" ], "abstract": "In the paper, the author expresses the difference $2^m\\bigl[\\zeta\\bigl(-m,\\frac{1+x}{2}\\bigr)-\\zeta\\bigl(-m,\\frac{2+x}{2}\\bigr)\\bigr]$ in terms of a linear combination of the function $\\Gamma(m+1){\\,}_2F_1(-m,-x;1;2)$ for $m\\in\\mathbb{N}_0$ and $x\\in(-1,\\infty)$ in the form of matrix equations, where $\\Gamma(z)$, $\\zeta(z,\\alpha)$, and ${}_2F_1(a,b;c;z)$ stand for the classical Euler gamma function, the Hurwitz zeta function, and the Gauss hypergeometric function, respectively. This problem originates from the Landau level quantization in solid state materials.", "revisions": [ { "version": "v1", "updated": "2025-02-02T01:45:32.000Z" } ], "analyses": { "subjects": [ "11M35", "15A09", "33C05" ], "keywords": [ "hurwitz zeta function", "gauss hypergeometric function", "linear combination", "difference", "solid state materials" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }