arXiv:2501.13580 [math.NT]AbstractReferencesReviewsResources
Multivariable $(\varphi_q,\mathcal{O}_K^{\times})$-modules associated to $p$-adic representations of $\mathrm{Gal}(\overline{K}/K)$
Published 2025-01-23Version 1
Let $K$ be an unramified extension of $\mathbb{Q}_p$, and $E$ a finite extension of $K$ with ring of integers $\mathcal{O}_E$. We associate to every finite type continuous $\mathcal{O}_E$-representation $\rho$ of $\mathrm{Gal}(\overline{K}/K)$ an \'etale $(\varphi_q,\mathcal{O}_K^{\times})$-module $D_{A_{\mathrm{mv},E}}^{(0)}(\rho)$ over $A_{\mathrm{mv},E}$, where $A_{\mathrm{mv},E}$ is the $p$-adic completion of a completed localization of the Iwasawa algebra $\mathcal{O}_E[\negthinspace[\mathcal{O}_K]\negthinspace]$. Furthermore, we prove that the functor $D_{A_{\mathrm{mv},E}}^{(0)}$ is fully faithful and exact. This functor is a $p$-adic analogue of $D_A^{(0)}$ in the recent work of Breuil, Herzig, Hu, Morra and Schraen.