{ "id": "2501.13580", "version": "v1", "published": "2025-01-23T11:39:19.000Z", "updated": "2025-01-23T11:39:19.000Z", "title": "Multivariable $(\\varphi_q,\\mathcal{O}_K^{\\times})$-modules associated to $p$-adic representations of $\\mathrm{Gal}(\\overline{K}/K)$", "authors": [ "Changjiang Du" ], "comment": "48 pages", "categories": [ "math.NT" ], "abstract": "Let $K$ be an unramified extension of $\\mathbb{Q}_p$, and $E$ a finite extension of $K$ with ring of integers $\\mathcal{O}_E$. We associate to every finite type continuous $\\mathcal{O}_E$-representation $\\rho$ of $\\mathrm{Gal}(\\overline{K}/K)$ an \\'etale $(\\varphi_q,\\mathcal{O}_K^{\\times})$-module $D_{A_{\\mathrm{mv},E}}^{(0)}(\\rho)$ over $A_{\\mathrm{mv},E}$, where $A_{\\mathrm{mv},E}$ is the $p$-adic completion of a completed localization of the Iwasawa algebra $\\mathcal{O}_E[\\negthinspace[\\mathcal{O}_K]\\negthinspace]$. Furthermore, we prove that the functor $D_{A_{\\mathrm{mv},E}}^{(0)}$ is fully faithful and exact. This functor is a $p$-adic analogue of $D_A^{(0)}$ in the recent work of Breuil, Herzig, Hu, Morra and Schraen.", "revisions": [ { "version": "v1", "updated": "2025-01-23T11:39:19.000Z" } ], "analyses": { "keywords": [ "adic representations", "finite extension", "multivariable", "adic completion", "iwasawa algebra" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable" } } }