arXiv Analytics

Sign in

arXiv:2501.00401 [math.RT]AbstractReferencesReviewsResources

The Gaudin model for the general linear Lie superalgebra and the completeness of the Bethe ansatz

Wan Keng Cheong, Ngau Lam

Published 2024-12-31Version 1

Let $\mathfrak{B}_{m|n}(\underline{\boldsymbol{z}})$ be the Gaudin algebra of the general linear Lie superalgebra $\mathfrak{gl}_{m|n}$ with respect to a sequence $\underline{\boldsymbol{z}} \in \mathbb{C}^\ell$ of pairwise distinct complex numbers, and let $M$ be any $\ell$-fold tensor product of irreducible polynomial modules over $\mathfrak{gl}_{m|n}$. We show that the singular space $M^{\rm sing}$ of $M$ is a cyclic $\mathfrak{B}_{m|n}(\underline{\boldsymbol{z}})$-module and the Gaudin algebra $\mathfrak{B}_{m|n}(\underline{\boldsymbol{z}})_{M^{\rm sing}}$ of $M^{\rm sing}$ is a Frobenius algebra. We also show that $\mathfrak{B}_{m|n}(\underline{\boldsymbol{z}})_{M^{\rm sing}}$ is diagonalizable with a simple spectrum for a generic $\underline{\boldsymbol{z}}$ and give a description of an eigenbasis and its corresponding eigenvalues in terms of the Fuchsian differential operators with polynomial kernels. This may be interpreted as the completeness of a reformulation of the Bethe ansatz for $\mathfrak{B}_{m|n}(\underline{\boldsymbol{z}})_{M^{\rm sing}}$.

Related articles: Most relevant | Search more
arXiv:2410.04902 [math.RT] (Published 2024-10-07)
Unitary branching rules for the general linear Lie superalgebra
arXiv:2403.11393 [math.RT] (Published 2024-03-18)
Branching algebras for the general linear Lie superalgebra
arXiv:1310.3798 [math.RT] (Published 2013-10-14)
Kac-Wakimoto character formula for the general linear Lie superalgebra