{ "id": "2501.00401", "version": "v1", "published": "2024-12-31T11:40:54.000Z", "updated": "2024-12-31T11:40:54.000Z", "title": "The Gaudin model for the general linear Lie superalgebra and the completeness of the Bethe ansatz", "authors": [ "Wan Keng Cheong", "Ngau Lam" ], "categories": [ "math.RT", "math-ph", "math.MP" ], "abstract": "Let $\\mathfrak{B}_{m|n}(\\underline{\\boldsymbol{z}})$ be the Gaudin algebra of the general linear Lie superalgebra $\\mathfrak{gl}_{m|n}$ with respect to a sequence $\\underline{\\boldsymbol{z}} \\in \\mathbb{C}^\\ell$ of pairwise distinct complex numbers, and let $M$ be any $\\ell$-fold tensor product of irreducible polynomial modules over $\\mathfrak{gl}_{m|n}$. We show that the singular space $M^{\\rm sing}$ of $M$ is a cyclic $\\mathfrak{B}_{m|n}(\\underline{\\boldsymbol{z}})$-module and the Gaudin algebra $\\mathfrak{B}_{m|n}(\\underline{\\boldsymbol{z}})_{M^{\\rm sing}}$ of $M^{\\rm sing}$ is a Frobenius algebra. We also show that $\\mathfrak{B}_{m|n}(\\underline{\\boldsymbol{z}})_{M^{\\rm sing}}$ is diagonalizable with a simple spectrum for a generic $\\underline{\\boldsymbol{z}}$ and give a description of an eigenbasis and its corresponding eigenvalues in terms of the Fuchsian differential operators with polynomial kernels. This may be interpreted as the completeness of a reformulation of the Bethe ansatz for $\\mathfrak{B}_{m|n}(\\underline{\\boldsymbol{z}})_{M^{\\rm sing}}$.", "revisions": [ { "version": "v1", "updated": "2024-12-31T11:40:54.000Z" } ], "analyses": { "keywords": [ "general linear lie superalgebra", "bethe ansatz", "gaudin model", "completeness", "gaudin algebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }