arXiv:2412.15281 [math.DS]AbstractReferencesReviewsResources
Minimal subshifts of prescribed mean dimension over general alphabets
Published 2024-12-18Version 1
Let $G$ be a countable infinite amenable group, $K$ a finite-dimensional compact metrizable space, and $(K^G,\sigma)$ the full $G$-shift on $K^G$. For any $r\in [0,{\rm mdim}(K^G,\sigma))$, we construct a minimal subshift $(X,\sigma)$ of $(K^G,\sigma)$ with mdim$(X,\sigma)=r$. Furthermore, we construct a subshift of $([0,1]^G,\sigma)$ such that its mean dimension is $1$, and that the set of all attainable values of the mean dimension of its minimal subsystems is exactly the interval $[0,1)$.
Comments: arXiv admin note: text overlap with arXiv:2101.01458 by other authors
Categories: math.DS
Related articles: Most relevant | Search more
arXiv:1511.03529 [math.DS] (Published 2015-11-11)
Dynamics of Chebyshev polynomials on $\mathbb{Z}_{2}$
arXiv:2204.03902 [math.DS] (Published 2022-04-08)
Minimal subsystems of given mean dimension in Bernstein spaces
arXiv:1810.08847 [math.DS] (Published 2018-10-20)
The Mapping Class Group of a Minimal Subshift