{ "id": "2412.15281", "version": "v1", "published": "2024-12-18T09:53:20.000Z", "updated": "2024-12-18T09:53:20.000Z", "title": "Minimal subshifts of prescribed mean dimension over general alphabets", "authors": [ "Xiangtong Wang", "Hang Zhao" ], "comment": "arXiv admin note: text overlap with arXiv:2101.01458 by other authors", "categories": [ "math.DS" ], "abstract": "Let $G$ be a countable infinite amenable group, $K$ a finite-dimensional compact metrizable space, and $(K^G,\\sigma)$ the full $G$-shift on $K^G$. For any $r\\in [0,{\\rm mdim}(K^G,\\sigma))$, we construct a minimal subshift $(X,\\sigma)$ of $(K^G,\\sigma)$ with mdim$(X,\\sigma)=r$. Furthermore, we construct a subshift of $([0,1]^G,\\sigma)$ such that its mean dimension is $1$, and that the set of all attainable values of the mean dimension of its minimal subsystems is exactly the interval $[0,1)$.", "revisions": [ { "version": "v1", "updated": "2024-12-18T09:53:20.000Z" } ], "analyses": { "subjects": [ "37B05", "54F45" ], "keywords": [ "prescribed mean dimension", "minimal subshift", "general alphabets", "finite-dimensional compact metrizable space", "minimal subsystems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }