arXiv Analytics

Sign in

arXiv:2412.03086 [math.CO]AbstractReferencesReviewsResources

Complete homogeneous symmetric polynomials with repeating variables

Luis Angel González-Serrano, Egor A. Maximenko

Published 2024-12-04Version 1

We consider polynomials of the form $\operatorname{h}_m(y_1^{[\varkappa_1]},\ldots,y_n^{[\varkappa_n]})$, where $\operatorname{h}_m$ is the complete homogeneous polynomial of degree $m$ and $y_j^{[\varkappa_j]}$ denotes $y_j$ repeated $\varkappa_j$ times. Using the decomposition of the generating function into partial fractions we represent such polynomials in the form \[ \operatorname{h}_m(y_1^{[\varkappa_1]},\ldots,y_n^{[\varkappa_n]}) =\sum_{j=1}^n \sum_{r=1}^{\varkappa_j} \binom{r+m-1}{r-1} A_{y,\varkappa,j,r} y_j^m, \] where $A_{y,\varkappa,j,r}$ are some coefficients that do not depend on $m$. We also provide an alternative proof using the inverse of the confluent Vandermonde matrix.

Related articles:
arXiv:2312.15680 [math.CO] (Published 2023-12-25)
Bialternant formula for Schur polynomials with repeating variables
arXiv:2305.03241 [math.CO] (Published 2023-05-05)
Complete flagged homogeneous polynomials
arXiv:2502.00378 [math.CO] (Published 2025-02-01)
Cyclic Sieving of Multisets with Bounded Multiplicity and the Frobenius Coin Problem