{ "id": "2412.03086", "version": "v1", "published": "2024-12-04T07:27:31.000Z", "updated": "2024-12-04T07:27:31.000Z", "title": "Complete homogeneous symmetric polynomials with repeating variables", "authors": [ "Luis Angel González-Serrano", "Egor A. Maximenko" ], "comment": "28 pages", "categories": [ "math.CO" ], "abstract": "We consider polynomials of the form $\\operatorname{h}_m(y_1^{[\\varkappa_1]},\\ldots,y_n^{[\\varkappa_n]})$, where $\\operatorname{h}_m$ is the complete homogeneous polynomial of degree $m$ and $y_j^{[\\varkappa_j]}$ denotes $y_j$ repeated $\\varkappa_j$ times. Using the decomposition of the generating function into partial fractions we represent such polynomials in the form \\[ \\operatorname{h}_m(y_1^{[\\varkappa_1]},\\ldots,y_n^{[\\varkappa_n]}) =\\sum_{j=1}^n \\sum_{r=1}^{\\varkappa_j} \\binom{r+m-1}{r-1} A_{y,\\varkappa,j,r} y_j^m, \\] where $A_{y,\\varkappa,j,r}$ are some coefficients that do not depend on $m$. We also provide an alternative proof using the inverse of the confluent Vandermonde matrix.", "revisions": [ { "version": "v1", "updated": "2024-12-04T07:27:31.000Z" } ], "analyses": { "subjects": [ "05E05", "15A15" ], "keywords": [ "complete homogeneous symmetric polynomials", "repeating variables", "confluent vandermonde matrix", "complete homogeneous polynomial", "partial fractions" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }