arXiv Analytics

Sign in

arXiv:2411.09701 [math.NT]AbstractReferencesReviewsResources

Counterexamples to Zagier's Duality Conjecture on Nahm Sums

Liuquan Wang

Published 2024-11-14Version 1

Given any positive integer $r$, Nahm's problem is to determine all rational $r\times r$ positive definite matrix $A$, $r$-dimensional rational vector $B$ and rational scalar $C$ such that the rank $r$ Nahm sum associated with $(A,B,C)$ is modular. Around 2007, Zagier conjectured that if the rank $r$ Nahm sum for $(A,B,C)$ is modular, then so is the dual Nahm sum associated with $(A^{-1},A^{-1}B,B^\mathrm{T} A^{-1}B/2-{r}/{24}-C)$. We construct some explicit rank four Nahm sums wherein the original Nahm sum is modular while its dual is not modular. This provides counterexamples to Zagier's conjecture.

Related articles: Most relevant | Search more
arXiv:2212.01901 [math.NT] (Published 2022-12-04)
Perfectoid Nullstellensatz: Results and counterexamples
arXiv:1606.06923 [math.NT] (Published 2016-06-22)
Near Counterexamples to Weil's Converse Theorem
arXiv:2009.03306 [math.NT] (Published 2020-09-07)
Counterexamples to a Conjecture by Alaoglu and Erdős