{ "id": "2411.09701", "version": "v1", "published": "2024-11-14T18:59:36.000Z", "updated": "2024-11-14T18:59:36.000Z", "title": "Counterexamples to Zagier's Duality Conjecture on Nahm Sums", "authors": [ "Liuquan Wang" ], "comment": "First version", "categories": [ "math.NT", "math.CO" ], "abstract": "Given any positive integer $r$, Nahm's problem is to determine all rational $r\\times r$ positive definite matrix $A$, $r$-dimensional rational vector $B$ and rational scalar $C$ such that the rank $r$ Nahm sum associated with $(A,B,C)$ is modular. Around 2007, Zagier conjectured that if the rank $r$ Nahm sum for $(A,B,C)$ is modular, then so is the dual Nahm sum associated with $(A^{-1},A^{-1}B,B^\\mathrm{T} A^{-1}B/2-{r}/{24}-C)$. We construct some explicit rank four Nahm sums wherein the original Nahm sum is modular while its dual is not modular. This provides counterexamples to Zagier's conjecture.", "revisions": [ { "version": "v1", "updated": "2024-11-14T18:59:36.000Z" } ], "analyses": { "subjects": [ "11P84", "33D15", "33D60", "11F03" ], "keywords": [ "zagiers duality conjecture", "counterexamples", "dual nahm sum", "dimensional rational vector", "original nahm sum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }