arXiv:2410.12305 [math.NT]AbstractReferencesReviewsResources
Sums of Fourier coefficients involving theta series and Dirichlet characters
Published 2024-10-16Version 1
Let $f$ be a holomorphic or Maass cusp forms for $ \rm SL_2(\mathbb{Z})$ with normalized Fourier coefficients $\lambda_f(n)$ and \bna r_{\ell}(n)=\#\left\{(n_1,\cdots,n_{\ell})\in \mathbb{Z}^2:n_1^2+\cdots+n_{\ell}^2=n\right\}. \ena Let $\chi$ be a primitive Dirichlet character of modulus $p$, a prime. In this paper, we are concerned with obtaining nontrivial estimates for the sum \bna \sum_{n\geq1}\lambda_f(n)r_{\ell}(n)\chi(n)w\left(\frac{n}{X}\right) \ena for any $\ell \geq 3$, where $w(x)$ be a smooth function compactly supported in $[1/2,1]$.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2208.09882 [math.NT] (Published 2022-08-21)
General coefficient-vanishing results associated with theta series
arXiv:math/0009187 [math.NT] (Published 2000-09-20)
Cubic identities for theta series in three variables
Eichler integrals for Maass cusp forms of half-integral weight