{ "id": "2410.12305", "version": "v1", "published": "2024-10-16T07:14:49.000Z", "updated": "2024-10-16T07:14:49.000Z", "title": "Sums of Fourier coefficients involving theta series and Dirichlet characters", "authors": [ "Yanxue Yu" ], "categories": [ "math.NT" ], "abstract": "Let $f$ be a holomorphic or Maass cusp forms for $ \\rm SL_2(\\mathbb{Z})$ with normalized Fourier coefficients $\\lambda_f(n)$ and \\bna r_{\\ell}(n)=\\#\\left\\{(n_1,\\cdots,n_{\\ell})\\in \\mathbb{Z}^2:n_1^2+\\cdots+n_{\\ell}^2=n\\right\\}. \\ena Let $\\chi$ be a primitive Dirichlet character of modulus $p$, a prime. In this paper, we are concerned with obtaining nontrivial estimates for the sum \\bna \\sum_{n\\geq1}\\lambda_f(n)r_{\\ell}(n)\\chi(n)w\\left(\\frac{n}{X}\\right) \\ena for any $\\ell \\geq 3$, where $w(x)$ be a smooth function compactly supported in $[1/2,1]$.", "revisions": [ { "version": "v1", "updated": "2024-10-16T07:14:49.000Z" } ], "analyses": { "keywords": [ "theta series", "maass cusp forms", "primitive dirichlet character", "obtaining nontrivial estimates", "smooth function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }