arXiv Analytics

Sign in

arXiv:2410.09082 [math.FA]AbstractReferencesReviewsResources

Hyperstability of some functional equations in modular spaces

Abderrahman Baza, Mohamed Rossafi, Mohammed Mouniane

Published 2024-10-05Version 1

In this paper, we investigate some hyperstability results, inspired by the concept of Ulam stability, for the following functional equations: \begin{equation} \varphi(x+y)+\varphi(x-y)=2\varphi(x)+2\varphi(y) \end{equation} \begin{equation} \varphi(ax+by) = A\varphi(x)+B\varphi(y)+C \end{equation} \begin{equation}\label{eqnd} f\left(\sum_{i=1}^{m}x_{i}\right)+\sum_{1\leq i<j\leq m}f\big(x_{i}-x_{j}\big)=m\sum_{i=1}^{m}f(x_{i}) \end{equation} in modular spaces.

Related articles: Most relevant | Search more
arXiv:2102.01789 [math.FA] (Published 2021-02-02)
A new type of functional equations on semigroups with involutions
arXiv:math/0511319 [math.FA] (Published 2005-11-12)
Fixed point theorems in modular spaces
arXiv:0901.1036 [math.FA] (Published 2009-01-08)
On a Capacity for Modular Spaces