arXiv Analytics

Sign in

arXiv:0901.1036 [math.FA]AbstractReferencesReviewsResources

On a Capacity for Modular Spaces

Markus Biegert

Published 2009-01-08Version 1

The purpose of this article is to define a capacity on certain topological measure spaces $X$ with respect to certain function spaces $V$ consisting of measurable functions. In this general theory we will not fix the space $V$ but we emphasize that $V$ can be the classical Sobolev space $W^{1,p}(\Omega)$, the classical Orlicz-Sobolev space $W^{1,\Phi}(\Omega)$, the Haj{\l}asz-Sobolev space $M^{1,p}(\Omega)$, the Musielak-Orlicz-Sobolev space (or generalized Orlicz-Sobolev space) and many other spaces. Of particular interest is the space $V:=\tW^{1,p}(\Omega)$ given as the closure of $W^{1,p}(\Omega)\cap C_c(\overline\Omega)$ in $W^{1,p}(\Omega)$. In this case every function $u\in V$ (a priori defined only on $\Omega$) has a trace on the boundary $\partial\Omega$ which is unique up to a $\Cap_{p,\Omega}$-polar set.

Related articles: Most relevant | Search more
arXiv:math/0511319 [math.FA] (Published 2005-11-12)
Fixed point theorems in modular spaces
arXiv:2303.16587 [math.FA] (Published 2023-03-29)
Maximal operator in Musielak--Orlicz--Sobolev spaces
arXiv:0806.1247 [math.FA] (Published 2008-06-06)
O-segments on topological measure spaces