arXiv Analytics

Sign in

arXiv:2409.12770 [math.CO]AbstractReferencesReviewsResources

Exact Values and Bounds for Ramsey Numbers of $C_4$ Versus a Star Graph

Luis Boza

Published 2024-09-19Version 1

The 8 unknown values of the Ramsey numbers $R(C_4,K_{1,n})$ for $n \leq 37$ are determined, showing that $R(C_4,K_{1,27}) = 33$ and $R(C_4,K_{1,n}) = n + 7$ for $28 \leq n \leq 33$ or $n = 37$. Additionally, the following results are proven: $\bullet$ If $n$ is even and $\lceil\sqrt{n}\rceil$ is odd, then $R(C_4,K_{1,n}) \leq n + \left\lceil\sqrt{n-\lceil\sqrt{n}\rceil+2}\right\rceil + 1$. $\bullet$ If $m \equiv 2 \,(\text{mod } 6)$ with $m \geq 8$, then $R(C_4,K_{1,m^2+3}) \leq m^2 + m + 4$. $\bullet$ If $R(C_4,K_{1,n}) > R(C_4,K_{1,n-1})$, then $R(C_4,K_{1,2n+1-R(C_4,K_{1,n})}) \geq n$.

Categories: math.CO
Subjects: 05C55, G.2.2
Related articles: Most relevant | Search more
arXiv:1501.07786 [math.CO] (Published 2015-01-30)
Stability and Ramsey numbers for cycles and wheels
arXiv:1103.2685 [math.CO] (Published 2011-03-14, updated 2014-10-27)
Ramsey numbers for trees
arXiv:1407.7092 [math.CO] (Published 2014-07-26)
Ramsey numbers of paths and graphs of the same order