{ "id": "2409.12770", "version": "v1", "published": "2024-09-19T13:37:53.000Z", "updated": "2024-09-19T13:37:53.000Z", "title": "Exact Values and Bounds for Ramsey Numbers of $C_4$ Versus a Star Graph", "authors": [ "Luis Boza" ], "categories": [ "math.CO" ], "abstract": "The 8 unknown values of the Ramsey numbers $R(C_4,K_{1,n})$ for $n \\leq 37$ are determined, showing that $R(C_4,K_{1,27}) = 33$ and $R(C_4,K_{1,n}) = n + 7$ for $28 \\leq n \\leq 33$ or $n = 37$. Additionally, the following results are proven: $\\bullet$ If $n$ is even and $\\lceil\\sqrt{n}\\rceil$ is odd, then $R(C_4,K_{1,n}) \\leq n + \\left\\lceil\\sqrt{n-\\lceil\\sqrt{n}\\rceil+2}\\right\\rceil + 1$. $\\bullet$ If $m \\equiv 2 \\,(\\text{mod } 6)$ with $m \\geq 8$, then $R(C_4,K_{1,m^2+3}) \\leq m^2 + m + 4$. $\\bullet$ If $R(C_4,K_{1,n}) > R(C_4,K_{1,n-1})$, then $R(C_4,K_{1,2n+1-R(C_4,K_{1,n})}) \\geq n$.", "revisions": [ { "version": "v1", "updated": "2024-09-19T13:37:53.000Z" } ], "analyses": { "subjects": [ "05C55", "G.2.2" ], "keywords": [ "ramsey numbers", "exact values", "star graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }