arXiv Analytics

Sign in

arXiv:2408.11944 [math.FA]AbstractReferencesReviewsResources

On the completeness of the space $\mathcal{O}_C$

Michael Kunzinger, Norbert Ortner

Published 2024-08-21Version 1

We give a new proof of the completeness of the space $\mathcal{O}_C$ by applying a criterion of compact regularity for the isomorphic sequence space $\lim_{k\rightarrow} (s\hat \otimes (\ell^\infty)_{-k})$. Along the way we show that the strong dual of any quasinormable Fr\'echet space is a compactly regular $\mathcal{LB}$-space. Finally, we prove that $\lim_{k\rightarrow}(E_k\hat \otimes_\iota F) = (\lim_{k\rightarrow} E_k) \hat \otimes_\iota F$ if the inductive limit $\lim_{k \rightarrow}(E_k \hat \otimes_\iota F)$ is compactly regular.

Related articles: Most relevant | Search more
arXiv:2304.00798 [math.FA] (Published 2023-04-03)
Topology of the space of conormal distributions
arXiv:1702.07867 [math.FA] (Published 2017-02-25)
Topological properties of strict $(LF)$-spaces and strong duals of Montel strict $(LF)$-spaces
arXiv:2404.03076 [math.FA] (Published 2024-04-03)
Completeness of systems of inner functions