{ "id": "2408.11944", "version": "v1", "published": "2024-08-21T18:57:28.000Z", "updated": "2024-08-21T18:57:28.000Z", "title": "On the completeness of the space $\\mathcal{O}_C$", "authors": [ "Michael Kunzinger", "Norbert Ortner" ], "comment": "11 pages", "categories": [ "math.FA" ], "abstract": "We give a new proof of the completeness of the space $\\mathcal{O}_C$ by applying a criterion of compact regularity for the isomorphic sequence space $\\lim_{k\\rightarrow} (s\\hat \\otimes (\\ell^\\infty)_{-k})$. Along the way we show that the strong dual of any quasinormable Fr\\'echet space is a compactly regular $\\mathcal{LB}$-space. Finally, we prove that $\\lim_{k\\rightarrow}(E_k\\hat \\otimes_\\iota F) = (\\lim_{k\\rightarrow} E_k) \\hat \\otimes_\\iota F$ if the inductive limit $\\lim_{k \\rightarrow}(E_k \\hat \\otimes_\\iota F)$ is compactly regular.", "revisions": [ { "version": "v1", "updated": "2024-08-21T18:57:28.000Z" } ], "analyses": { "subjects": [ "46A04", "46A08", "46A13", "46F05", "46F10" ], "keywords": [ "completeness", "isomorphic sequence space", "compactly regular", "compact regularity", "strong dual" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }