arXiv Analytics

Sign in

arXiv:2408.10662 [math.PR]AbstractReferencesReviewsResources

Convergence rate in the law of logarithm for negatively dependent random variables under sub-linear expectations

Mingzhou Xu, Wei Wang

Published 2024-08-20Version 1

Let $\{X,X_n,n\ge 1\}$ be a sequence of identically distributed, negatively dependent (NA) random variables under sub-linear expectations, and denote $S_n=\sum_{i=1}^{n}X_i$, $n\ge 1$. Assume that $h(\cdot)$ is a positive non-decreasing function on $(0,\infty)$ fulfulling $\int_{1}^{\infty}(th(t))^{-1}\dif t=\infty$. Write $Lt=\ln \max\{\me,t\}$, $\psi(t)=\int_{1}^{t}(sh(s))^{-1}\dif s$, $t\ge 1$. In this sequel, we establish that $\sum_{n=1}^{\infty}(nh(n))^{-1}\vv\left\{|S_n|\ge (1+\varepsilon)\sigma\sqrt{2nL\psi(n)}\right\}<\infty$, $\forall \varepsilon>0$ if $\ee(X)=\ee(-X)=0$ and $\ee(X^2)=\sigma^2\in (0,\infty)$. The result generalizes that of NA random variables in probability space.

Comments: 8 pages, submitted to Mathematica Applicata
Categories: math.PR
Subjects: 60F15, 60G50
Related articles: Most relevant | Search more
arXiv:2211.16050 [math.PR] (Published 2022-11-29)
Random walks with drift inside a pyramid: convergence rate for the survival probability
arXiv:1408.5291 [math.PR] (Published 2014-08-22)
Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications
arXiv:2107.07097 [math.PR] (Published 2021-07-15)
Convergence rate for a class of supercritical superprocesses