{ "id": "2408.10662", "version": "v1", "published": "2024-08-20T09:03:21.000Z", "updated": "2024-08-20T09:03:21.000Z", "title": "Convergence rate in the law of logarithm for negatively dependent random variables under sub-linear expectations", "authors": [ "Mingzhou Xu", "Wei Wang" ], "comment": "8 pages, submitted to Mathematica Applicata", "categories": [ "math.PR" ], "abstract": "Let $\\{X,X_n,n\\ge 1\\}$ be a sequence of identically distributed, negatively dependent (NA) random variables under sub-linear expectations, and denote $S_n=\\sum_{i=1}^{n}X_i$, $n\\ge 1$. Assume that $h(\\cdot)$ is a positive non-decreasing function on $(0,\\infty)$ fulfulling $\\int_{1}^{\\infty}(th(t))^{-1}\\dif t=\\infty$. Write $Lt=\\ln \\max\\{\\me,t\\}$, $\\psi(t)=\\int_{1}^{t}(sh(s))^{-1}\\dif s$, $t\\ge 1$. In this sequel, we establish that $\\sum_{n=1}^{\\infty}(nh(n))^{-1}\\vv\\left\\{|S_n|\\ge (1+\\varepsilon)\\sigma\\sqrt{2nL\\psi(n)}\\right\\}<\\infty$, $\\forall \\varepsilon>0$ if $\\ee(X)=\\ee(-X)=0$ and $\\ee(X^2)=\\sigma^2\\in (0,\\infty)$. The result generalizes that of NA random variables in probability space.", "revisions": [ { "version": "v1", "updated": "2024-08-20T09:03:21.000Z" } ], "analyses": { "subjects": [ "60F15", "60G50" ], "keywords": [ "negatively dependent random variables", "sub-linear expectations", "convergence rate", "na random variables", "result generalizes" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }