arXiv:2408.08689 [math.AT]AbstractReferencesReviewsResources
The splitting of the de Rham cohomology of soft function algebras is multiplicative
Published 2024-08-16Version 1
Let $A$ be a real soft function algebra. In arXiv:2208.11431 we have obtained a canonical splitting $\mathrm{H}^* (\Omega ^\bullet _{A|\mathrm{R}}) \cong \mathrm{H} ^* (X,\mathrm{R})\oplus \text{(something)}$ via the canonical maps $\Lambda_A:\mathrm{H} ^* (X,\mathrm{R})\to\mathrm{H} ^* (\Omega ^\bullet _{A|\mathrm{R}})$ and $\Psi_A:\mathrm{H} ^* (\Omega ^\bullet _{A|\mathrm{R}})\to\mathrm{H} ^* (X,\mathrm{R})$. In this paper we prove that these maps are multiplicative.
Comments: 12 pages
Related articles: Most relevant | Search more
arXiv:2208.11431 [math.AT] (Published 2022-08-24)
The de Rham cohomology of soft function algebras
Multiplicative 2-cocycles at the prime 2
arXiv:1404.1127 [math.AT] (Published 2014-04-04)
Long exact sequences for de Rham cohomology of diffeological spaces