{ "id": "2408.08689", "version": "v1", "published": "2024-08-16T12:05:20.000Z", "updated": "2024-08-16T12:05:20.000Z", "title": "The splitting of the de Rham cohomology of soft function algebras is multiplicative", "authors": [ "Igor Baskov" ], "comment": "12 pages", "categories": [ "math.AT", "math.AC" ], "abstract": "Let $A$ be a real soft function algebra. In arXiv:2208.11431 we have obtained a canonical splitting $\\mathrm{H}^* (\\Omega ^\\bullet _{A|\\mathrm{R}}) \\cong \\mathrm{H} ^* (X,\\mathrm{R})\\oplus \\text{(something)}$ via the canonical maps $\\Lambda_A:\\mathrm{H} ^* (X,\\mathrm{R})\\to\\mathrm{H} ^* (\\Omega ^\\bullet _{A|\\mathrm{R}})$ and $\\Psi_A:\\mathrm{H} ^* (\\Omega ^\\bullet _{A|\\mathrm{R}})\\to\\mathrm{H} ^* (X,\\mathrm{R})$. In this paper we prove that these maps are multiplicative.", "revisions": [ { "version": "v1", "updated": "2024-08-16T12:05:20.000Z" } ], "analyses": { "keywords": [ "rham cohomology", "real soft function algebra", "multiplicative", "canonical maps" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }