arXiv Analytics

Sign in

arXiv:2408.07548 [math.GN]AbstractReferencesReviewsResources

On the probabilistic metrizability of approach spaces

Hongliang Lai, Lili Shen, Junche Yu

Published 2024-08-14Version 1

We investigate approach spaces generated by probabilistic metric spaces with respect to a continuous t-norm $*$ on the unit interval $[0,1]$. Let $k^*$ be the supremum of the idempotent elements of $*$ in $[0,1)$. It is shown that if $k^*=1$ (resp. $k^*<1$), then an approach space is probabilistic metrizable with respect to $*$ if and only if it is probabilistic metrizable with respect to the minimum (resp. product) t-norm.

Related articles: Most relevant | Search more
arXiv:2102.02939 [math.GN] (Published 2021-02-05)
Continuous $[0,1]$-lattices and injective $[0,1]$-approach spaces
arXiv:1808.03268 [math.GN] (Published 2018-08-09)
Strong-I^K-Convergence in Probabilistic Metric Spaces
arXiv:1201.1161 [math.GN] (Published 2012-01-05)
Probabilistic Metric Spaces as enriched categories