{ "id": "2408.07548", "version": "v1", "published": "2024-08-14T13:37:28.000Z", "updated": "2024-08-14T13:37:28.000Z", "title": "On the probabilistic metrizability of approach spaces", "authors": [ "Hongliang Lai", "Lili Shen", "Junche Yu" ], "comment": "15 pages", "categories": [ "math.GN", "math.CT" ], "abstract": "We investigate approach spaces generated by probabilistic metric spaces with respect to a continuous t-norm $*$ on the unit interval $[0,1]$. Let $k^*$ be the supremum of the idempotent elements of $*$ in $[0,1)$. It is shown that if $k^*=1$ (resp. $k^*<1$), then an approach space is probabilistic metrizable with respect to $*$ if and only if it is probabilistic metrizable with respect to the minimum (resp. product) t-norm.", "revisions": [ { "version": "v1", "updated": "2024-08-14T13:37:28.000Z" } ], "analyses": { "subjects": [ "54A05", "54E70", "54E35" ], "keywords": [ "approach space", "probabilistic metrizability", "probabilistic metric spaces", "unit interval", "probabilistic metrizable" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }