arXiv Analytics

Sign in

arXiv:2407.17096 [math.AP]AbstractReferencesReviewsResources

Gaussian Poincaré inequalities on the half-space with singular weights

Luigi Negro, Chiara Spina

Published 2024-07-24Version 1

We prove Rellich-Kondrachov type theorems and weighted Poincar\'{e} inequalities on the half-space $\mathbb{R}^{N+1}_+=\{z=(x,y): x \in \mathbb{R}^N, y>0\}$ endowed with the weighted Gaussian measure $\mu :=y^ce^{-a|z|^2}dz$ where $c+1>0$ and $a>0$. We prove that for some positive constant $C>0$ one has \begin{align*} \left\|u-\overline u\right\|_{L^2_\mu(\mathbb{R}^{N+1}_+)}\leq C \|\nabla u\|_{L^2_\mu (\mathbb{R}^{N+1}_+)},\qquad \forall u\in H^1_\mu(\mathbb{R}^{N+1}_+) \end{align*} where $\overline u=\frac 1{\mu(\mathbb{R}^{N+1}_+)}\int_{\mathbb{R}^{N+1}_+} u\,d\mu(z)$. Besides this we also consider the local case of bounded domains of $\mathbb{R}^{N+1}_+$ where the measure $\mu$ is $y^cdz$.

Related articles: Most relevant | Search more
arXiv:2303.13053 [math.AP] (Published 2023-03-23)
Classification of solutions to $Δu = u^{-γ}$ in the half-space
arXiv:2309.14319 [math.AP] (Published 2023-09-25)
Regularity theory for parabolic operators in the half-space with boundary degeneracy
arXiv:2405.09540 [math.AP] (Published 2024-05-15)
Singular parabolic operators in the half-space with boundary degeneracy: Dirichlet and oblique derivative boundary conditions