{ "id": "2407.17096", "version": "v1", "published": "2024-07-24T08:49:11.000Z", "updated": "2024-07-24T08:49:11.000Z", "title": "Gaussian Poincaré inequalities on the half-space with singular weights", "authors": [ "Luigi Negro", "Chiara Spina" ], "categories": [ "math.AP" ], "abstract": "We prove Rellich-Kondrachov type theorems and weighted Poincar\\'{e} inequalities on the half-space $\\mathbb{R}^{N+1}_+=\\{z=(x,y): x \\in \\mathbb{R}^N, y>0\\}$ endowed with the weighted Gaussian measure $\\mu :=y^ce^{-a|z|^2}dz$ where $c+1>0$ and $a>0$. We prove that for some positive constant $C>0$ one has \\begin{align*} \\left\\|u-\\overline u\\right\\|_{L^2_\\mu(\\mathbb{R}^{N+1}_+)}\\leq C \\|\\nabla u\\|_{L^2_\\mu (\\mathbb{R}^{N+1}_+)},\\qquad \\forall u\\in H^1_\\mu(\\mathbb{R}^{N+1}_+) \\end{align*} where $\\overline u=\\frac 1{\\mu(\\mathbb{R}^{N+1}_+)}\\int_{\\mathbb{R}^{N+1}_+} u\\,d\\mu(z)$. Besides this we also consider the local case of bounded domains of $\\mathbb{R}^{N+1}_+$ where the measure $\\mu$ is $y^cdz$.", "revisions": [ { "version": "v1", "updated": "2024-07-24T08:49:11.000Z" } ], "analyses": { "subjects": [ "35K08", "35K67", "47D07", "35J70", "35J75", "35B65" ], "keywords": [ "singular weights", "inequalities", "half-space", "rellich-kondrachov type theorems", "weighted gaussian measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }