arXiv:2406.19047 [math.NT]AbstractReferencesReviewsResources
Linear independence of continued fractions with algebraic terms
Jaroslav Hančl, Mathias L. Laursen, Jitu Berhanu Leta
Published 2024-06-27Version 1
We give conditions on sequences of positive algebraic numbers $\{a_{n,j}\}_{n=1}^\infty$, $j=1,\dots ,M$ and number field $\mathbb K$ to ensure that the numbers defined by the continued fractions $[0;a_{1,j},a_{2,j},\dots ]$, $j=1,\dots ,M$ and $1$ are linearly independent over $\mathbb K$.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2212.00366 [math.NT] (Published 2022-12-01)
On linear independence of Dirichlet $L$ values
arXiv:2211.03030 [math.NT] (Published 2022-11-06)
Linear independence of values of the $q$-exponential and related functions
arXiv:2205.15601 [math.NT] (Published 2022-05-31)
Linear independence of certain numbers in the base-$b$ number system