arXiv Analytics

Sign in

arXiv:2205.15601 [math.NT]AbstractReferencesReviewsResources

Linear independence of certain numbers in the base-$b$ number system

Shintaro Murakami, Yohei Tachiya

Published 2022-05-31Version 1

Let $(i,j)\in \mathbb{N}\times \mathbb{N}_{\geq2}$ and $S_{i,j}$ be an infinite subset of positive integers including all prime numbers in some arithmetic progression. In this paper, we prove the linear independence over $\mathbb{Q}$ of the numbers \[ 1, \quad \sum_{n\in S_{i,j}}^{}\frac{a_{i,j}(n)}{b^{in^j}},\quad (i,j)\in \mathbb{N}\times \mathbb{N}_{\geq2}, \] where $b\geq2$ is an integer and $a_{i,j}(n)$ are bounded nonzero integer-valued functions on $S_{i,j}$. Moreover, we also establish a necessary and sufficient condition on the subset $\mathcal{A}$ of $\mathbb{N}\times \mathbb{N}_{\geq2}$ for the numbers \[ 1, \quad \sum_{n\in T_{i,j}}^{}\frac{a_{i,j}(n)}{b^{in^j}},\quad (i,j)\in \mathcal{A} \] to be linearly independent over $\mathbb{Q}$ for any given infinite subsets $T_{i,j}$ of positive integers. Our theorems generalize a result of V. Kumar.

Related articles: Most relevant | Search more
arXiv:math/0703467 [math.NT] (Published 2007-03-15)
On sequences of positive integers having no $p$ terms in arithmetic progression
arXiv:1505.06424 [math.NT] (Published 2015-05-24)
Squares in arithmetic progression over cubic fields
arXiv:2006.13930 [math.NT] (Published 2020-06-24)
Distributions of Arithmetic Progressions in Piatetski-Shapiro Sequence