arXiv Analytics

Sign in

arXiv:2405.09322 [math.CO]AbstractReferencesReviewsResources

The number of symmetric chain decompositions

István Tomon

Published 2024-05-15Version 1

We prove that the number of symmetric chain decompositions of the Boolean lattice $2^{[n]}$ is $$\left(\frac{n}{2e}+o(n)\right)^{2^n}.$$ Furthermore, the number of symmetric chain decompositions of the hypergrid $[t]^n$ is $$n^{(1-o_n(1))\cdot t^n}.$$

Comments: 7 pages
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:math/0211390 [math.CO] (Published 2002-11-25)
The cd-index of the Boolean lattice
arXiv:2305.16520 [math.CO] (Published 2023-05-25)
Note on the number of antichains in generalizations of the Boolean lattice
arXiv:2104.02002 [math.CO] (Published 2021-04-05)
Ramsey numbers of Boolean lattices