{ "id": "2405.09322", "version": "v1", "published": "2024-05-15T13:22:42.000Z", "updated": "2024-05-15T13:22:42.000Z", "title": "The number of symmetric chain decompositions", "authors": [ "István Tomon" ], "comment": "7 pages", "categories": [ "math.CO" ], "abstract": "We prove that the number of symmetric chain decompositions of the Boolean lattice $2^{[n]}$ is $$\\left(\\frac{n}{2e}+o(n)\\right)^{2^n}.$$ Furthermore, the number of symmetric chain decompositions of the hypergrid $[t]^n$ is $$n^{(1-o_n(1))\\cdot t^n}.$$", "revisions": [ { "version": "v1", "updated": "2024-05-15T13:22:42.000Z" } ], "analyses": { "keywords": [ "symmetric chain decompositions", "boolean lattice" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }