arXiv:2405.08000 [math.FA]AbstractReferencesReviewsResources
A characterization of the existence of zeros for operators with Lipschitzian derivative and closed range
Published 2024-05-06Version 1
Let $H$ be a real Hilbert space and $\Phi:H\to H$ be a $C^1$ operator with Lipschitzian derivative and closed range. We prove that $\Phi^{-1}(0)\neq \emptyset$ if and only if, for each $\epsilon>0$, there exist a convex set $X\subset H$ and a convex function $\psi:X\to {\bf R}$ such that $\sup_{x\in X}(\|x\|^2+\psi(x))-\inf_{x\in X}\|x\|^2+\psi(x))<\epsilon$ and $0\in \overline{conv}(\Phi(X))$.
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1009.0079 [math.FA] (Published 2010-09-01)
A characterization of inner product spaces
arXiv:1512.00788 [math.FA] (Published 2015-12-02)
A characterization of barrelledness of $C_p(X)$
arXiv:1506.03397 [math.FA] (Published 2015-06-10)
Characterization of $1$-almost greedy bases