arXiv Analytics

Sign in

arXiv:2404.06410 [math.CO]AbstractReferencesReviewsResources

The maximum degree of the $r$th power of a sparse random graph

Alan Frieze, Aditya Raut

Published 2024-04-09Version 1

Let $G^r_{n,p}$ denote the $r$th power of the random graph $G_{n,p}$, where $p=c/n$ for a positive constant $c$. We prove that w.h.p. the maximum degree $\Delta\left(G^r_{n,p}\right)\sim \frac{\log n}{\log_{(r+1)}n}$. Here $\log_{(k)}n$ indicates the repeated application of the log-function $k$ times. So, for example, $\log_{(3)}n=\log\log\log n$.

Related articles: Most relevant | Search more
arXiv:1203.0379 [math.CO] (Published 2012-03-02)
Equitable Colorings of Planar Graphs without Short Cycles
arXiv:0801.1744 [math.CO] (Published 2008-01-11)
Acyclic Edge Coloring of Graphs with Maximum Degree 4
arXiv:1302.2405 [math.CO] (Published 2013-02-11, updated 2014-04-05)
Acyclic edge coloring of graphs