{ "id": "2404.06410", "version": "v1", "published": "2024-04-09T15:57:16.000Z", "updated": "2024-04-09T15:57:16.000Z", "title": "The maximum degree of the $r$th power of a sparse random graph", "authors": [ "Alan Frieze", "Aditya Raut" ], "categories": [ "math.CO" ], "abstract": "Let $G^r_{n,p}$ denote the $r$th power of the random graph $G_{n,p}$, where $p=c/n$ for a positive constant $c$. We prove that w.h.p. the maximum degree $\\Delta\\left(G^r_{n,p}\\right)\\sim \\frac{\\log n}{\\log_{(r+1)}n}$. Here $\\log_{(k)}n$ indicates the repeated application of the log-function $k$ times. So, for example, $\\log_{(3)}n=\\log\\log\\log n$.", "revisions": [ { "version": "v1", "updated": "2024-04-09T15:57:16.000Z" } ], "analyses": { "keywords": [ "sparse random graph", "th power", "maximum degree", "positive constant" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }