arXiv:2404.04867 [math.CO]AbstractReferencesReviewsResources
A Bollobás-type problem: from root systems to Erdős-Ko-Rado
Patrick J. Browne, Qëndrim R. Gashi, Padraig Ó Catháin
Published 2024-04-07Version 1
Motivated by an Erd\H{o}s--Ko--Rado type problem on sets of strongly orthogonal roots in the $A_{\ell}$ root system, we estimate bounds for the size of a family of pairs $(A_{i}, B_{i})$ of $k$-subsets in $\{ 1, 2, \ldots, n\}$ such that $A_{i} \cap B_{j}= \emptyset$ and $|A_{i} \cap A_{j}| + |B_{i} \cap B_{j}| = k$ for all $i \neq j$. This is reminiscent of a classic problem of Bollob\'as. We provide upper and lower bounds for this problem, relying on classical results of extremal combinatorics and an explicit construction using the incidence matrix of a finite projective plane.
Comments: 7 pages, 2 figures
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:2101.03119 [math.CO] (Published 2021-01-08)
Real roots in the root system $\mathsf{E}_{k,n}$
arXiv:1802.03444 [math.CO] (Published 2018-02-09)
Using the existence of t-designs to prove Erdős-Ko-Rado
arXiv:1901.06945 [math.CO] (Published 2019-01-21)
The action of the Weyl group on the $E_8$ root system