{ "id": "2404.04867", "version": "v1", "published": "2024-04-07T08:24:15.000Z", "updated": "2024-04-07T08:24:15.000Z", "title": "A Bollobás-type problem: from root systems to Erdős-Ko-Rado", "authors": [ "Patrick J. Browne", "Qëndrim R. Gashi", "Padraig Ó Catháin" ], "comment": "7 pages, 2 figures", "categories": [ "math.CO" ], "abstract": "Motivated by an Erd\\H{o}s--Ko--Rado type problem on sets of strongly orthogonal roots in the $A_{\\ell}$ root system, we estimate bounds for the size of a family of pairs $(A_{i}, B_{i})$ of $k$-subsets in $\\{ 1, 2, \\ldots, n\\}$ such that $A_{i} \\cap B_{j}= \\emptyset$ and $|A_{i} \\cap A_{j}| + |B_{i} \\cap B_{j}| = k$ for all $i \\neq j$. This is reminiscent of a classic problem of Bollob\\'as. We provide upper and lower bounds for this problem, relying on classical results of extremal combinatorics and an explicit construction using the incidence matrix of a finite projective plane.", "revisions": [ { "version": "v1", "updated": "2024-04-07T08:24:15.000Z" } ], "analyses": { "subjects": [ "05D05", "17B22" ], "keywords": [ "root system", "bollobás-type problem", "erdős-ko-rado", "finite projective plane", "strongly orthogonal roots" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }